Finding the nth Fibonacci number via an eigenvector change of basis
—
Dan Davison
$$
\newcommand{\i}{\mathbf{i}}
\newcommand{\j}{\mathbf{j}}
\newcommand{\cvec}[2]{\begin{pmatrix}#1\\#2\end{pmatrix}}
\newcommand{\mat}[4]{\begin{bmatrix}#1 & #2\\#3 & #4\\ \end{bmatrix}}
\newcommand{\scvec}[2]{\tiny{\cvec{#1}{#2}}}
\newcommand{\smat}[4]{\tiny{\mat{#1}{#2}{#3}{#4}}}
\newcommand{\nth}{n^{\text{th}}}
$$ ...
Category:
misc
Tags:
Linear Algebra
—
Dan Davison
$$
\newcommand{\i}{\mathbf{i}}
\newcommand{\j}{\mathbf{j}}
\newcommand{\cvec}[2]{\begin{pmatrix}#1\\#2\end{pmatrix}}
\newcommand{\mat}[4]{\begin{bmatrix}#1 & #2\\#3 & #4\\ \end{bmatrix}}
\newcommand{\scvec}[2]{\tiny{\cvec{#1}{#2}}}
\newcommand{\smat}[4]{\tiny{\mat{#1}{#2}{#3}{#4}}}
\newcommand{\nth}{n^{\text{th}}}
$$ ...
Category:
misc
Tags:
Classical Mechanics by John R. Taylor
—
Dan Davison
Notes on Classical Mechanics by John R. Taylor.
$$
\newcommand{\xhat}{\vec{e_x}}
\newcommand{\yhat}{\vec{e_y}}
\newcommand{\rhat}{\vec{e_r}}
\newcommand{\phihat}{\vec{e_\phi}}
\newcommand{\r}{\vec{r}}
\newcommand{\v}{\vec{v}}
\newcommand{\p}{\vec{p}}
\newcommand{\a}{\vec{a}}
\newcommand{\F}{\vec{F}}
\newcommand{\vector}[1]{\begin{bmatrix}#1\end{bmatrix}}
$$ ...
Category:
misc
Tags: